Great Lakes Commission

Transportation of Dredged Material

April 22, 2016

Dredged Materials: Transportation Challenges & Cost Considerations

presented by

Foth Infrastructure & Environment
Foth Presenters

Ron French
Sediment Management Leader
Ron.French@Foth.com

Brian Hinrichs, PSS/POWTS
Senior Environmental Scientist
Brian.Hinrichs@Foth.com
Objective

―Plan recognizes that CDFs are a necessary part of the solution, but additional approaches are needed. …
- Emphasizing beneficial uses of dredged material (including reclaiming material already deposited in CDFs for beneficial reuse) "

- Disposition strategies discussed
- Transportation of dredged material for beneficial use not evaluated
- Transportation costs can be limiting but there are funding opportunities
Agenda

- Transportation Options
- Cost Integration into a Management Plan
Transportation Options

- Bed Load Interceptor
- Barge
- Self-unloading Freighter
- Hydraulic Dredging & Pipeline Discharge
- Truck
- Rail
Bed Load Interceptor

Benefits
- handled only once
- little/no noise
- low carbon footprint
- multiple locations
- safe
- dewater within yards of extraction site
- all granular material

Challenges
- upfront costs
Hydraulic Dredging & Pipeline Discharge

- Benefits
 - allows movement of large quantities of material for relatively short distances and fairly flat land
 - up to 4 miles
Hydraulic

- Challenges
 - best suited for MMS / End Use that can handle large volumes of water, at or adjacent to a water resource (beach nourishment or habitat restoration)
 - for every yard of sediment moved, 10 yards of water is moved typically more costly per cubic yard
 - can only be used on certain types of material
 - cannot be used on hard / rock material
Fox River Sediment Dredging
Hydraulic – Geotube®

- Typically used for high organic matter material to be used for
 - top soil
 - top soil blending
- Typically staged at, or near, dredging site
- Widely acceptable by regulatory agencies
 - mitigates water quality issues
Barging

Benefits:

- more efficient when material management site (MMS) / end use is further away
- greater capacity - typical barge can carry 33 – 60 truckloads
- low carbon footprint
- no spill cleanup
- no traffic / pedestrian safety concerns
- reduces total project time – normally allows 24-hr dredging
Barging

- Challenges
 - requires additional handling
 - MMS / End Use needs to be accessible to water
 - may require infrastructure - unloading site dock
Self-unloading Freighter

- **Benefits**
 - capacity

- **Challenges**
 - limited practicality
Trucking

- **Benefits**
 - usually does not require additional infrastructure
 - unlimited distance between dredge and disposal sites
Challenges

- cost
- road wear
- traffic & pedestrian safety
- material must be dewatered prior to beneficial use
- fuel consumption
- carbon footprint
- spill potential
Rail

- **Benefits**
 - High capacity rail cars
 - >100 tons = 4 truckloads
 - Limited traffic congestion
 - No damage to highway infrastructure
 - 2-4 times more fuel efficient and 3 times cleaner than trucks
 - Material can be moved long distances

- **Challenges**
 - MMS / End Use site needs to be near rail line
 - may add rail spur (ex frac sand) - known costs
 - mine reclamation
 - Acquisition of rail cars
 - Coordination with other rail companies
 - Use of bi-modal transportation can reduce costs
Cost Integration Into A Management Plan

Bed Load Interceptor $3 to 5 / cy
Barge $5 to 10 / cy
Self-unloading Freighter $5 to 10 / cy
Hydraulic Dredging & Pipeline Discharge $12 to 17/cy

(estimate - 2 miles)

Truck $13 to 20 / cy
Rail $.05 / cy / mile, $45/cy, $15 - $19/cy
Cost Integration Into A Management Plan

- End use market value of the material
 - identify a market value for the beneficial use of the material
 - value offsets the transportation cost

- Examples
 - private beach nourishment
 - DOT & private infrastructure uses
 - soil blending
 - brownfield & landfill capping
 - wetland bank creation (for profit)
 - fill for building foundations
Cost Integration Into A Management Plan

- Social / environmental value of the material
 - the action is a public good
 - produces good will
 - willingness to pay additional cost
 - environmental benefits
 - public health benefits

- Outcomes
 - habitat creation
 - beach nourishment
 - shoreline stabilization
 - improved water quality
 - job creation
Cost Integration Into A Management Plan

- Need funding sources sanction of higher transportation costs
 - social benefits
 - lower carbon footprint
 - pedestrian / vehicle safety
 - environmental benefit & value of end use
 - economic benefit
 - new market creation

- Examples
 - wetland development
 - beach nourishment
 - wetland mitigation
 - job creation in beneficial use industries
Cost Integration Into A Management Plan

- Funding Scenarios
Cost Integration Into A Management Plan

DID YOU KNOW WE CARRY SUPER SACKS FOR TOPSOIL, MULCH, COMPOST, GRAVEL AND MORE

ADVANTAGES:
- Holds 1 cubic yard of product
- No more dyed or stained surfaces
- Gets the material closer to where you need it
- Closeable to ensure dry, pliable material all season long
- Hassle-free, no waste or garbage from empty bags
- Available for easy pickup or delivery

CLICK HERE FOR MORE INFORMATION

Kurtz Bros., Inc.
Cost Integration Into A Management Plan

Cat Island
(Port of Green Bay, WI)
Cost Integration Into A Management Plan

CDF Airspace *(CDF 12, Cleveland OH)*