WESTERN LAKE ERIE BASIN

Influence of Open-Lake Placement of Dredged Material on Harmful Algal Blooms

Presenters: Joe DePinto, Ph.D. and Ed Verhamme
LimnoTech

October 27, 2014
Project Team

- Ecology and Environment, Inc.
- LimnoTech
- University of Toledo
- University of Wisconsin -Stout
- Heidelberg University

Other Data Providers: NOAA, USGS, and EPA
Problem Statement

• Is open-lake placement of dredged material from Toledo Harbor a significant factor contributing to harmful algal bloom (HAB) events that have occurred in the Western Lake Erie Basin (WLEB)?

• Use field sampling and modeling analyses to assess short term and long term effects

Photo: 2014 Toledo Water Intake
External Loads

Conceptual Model
External TP Load

The Maumee River higher mean TP concentration is just what cyanobacteria need to form HABs

- Maumee River TP Load delivers very high TP concentration (>0.4 mg TP/L) to Western Basin during high flow events in spring.
- The Detroit River has a large load, but very low TP concentration.
- Other tributaries/sources have a relatively small TP load.
Dredged Material

Conceptual Model
Toledo Harbor Dredging

- Toledo Harbor
 - ~1/4 of total Great Lakes maintenance dredging cost (highest in Great Lakes)
 - Designated a “critical” dredged material management area
 - 760,000 CY (20 yr. avg.) 85% from Bay Channel

- Sediment sources to Federal navigation channels
 - Maumee River is dominant loading source
 - Wind-wave resuspension focuses Maumee-delivered and other sediments into navigation channel

Western Lake Erie Basin: 2006-12 Sediment Load Distribution

- Other Sources 31%
- Detroit River 14%
- Maumee River 55%
2013 Open Lake Placement

- Mechanical dredging with placement into 1,500 CY scow
- Placement events occur ~6x per day between July and October (675 total)
- Scows have a draft of 10 feet and placement occurs in 15-20 feet of water. Placement takes <1min
Field Sampling Overview

- **Short-term event sampling**
 - Monitored placement events on six different days
 - Collected vertical profiles
 - Grab samples of nutrients & solids
 - Dredged material sampling

- **Long-term monitoring**
 - Continuous water quality sondes
 - Grab samples
 - Sediment (June & October)
 - Cores
 - Surface grabs
 - Phosphorus flux
 - Sediment traps
Water Quality

Conceptual Model

External Loads
- Tributary Loads
 - Point and Non-Point Sources
- Atmospheric Deposition
- Other Direct Sources

Exchange and Transport with Central Basin

Dredged Material
- Growth

Blue Green Algae
- Excretion, Death, Grazing

Particulate Phosphorus
- Deposition
- Rapid Zone Settling

Dissolved Phosphorus
- Resuspension
- Pore Water Diffusion
- Deposition

Water Column

Upper Sediment Layer

Lower Sediment Layer
Short Term - Plume Tracking

97.5% of placed material settles immediately remaining 2.5% within an hour
Plume Tracking

TP in water column reaches background levels within an hour (through settling and dispersion).

SRP in water column reaches background levels within an hour (through dispersion).
Biological

Conceptual Model
Biological Results

Concentrations of Phytoplankton are highest at the Maumee River Mouth

[Graph showing Chlorophyll-a (ug/L) concentrations for different months and areas.]
Sediment

Conceptual Model
Sediment Results

Sediment concentrations of TP at the placement site and reference areas are similar, but lower than Maumee River suspended sediment.

Maumee River Suspended Sediment: 3.5 mg/g
Sediment P Aerobic Release Rates

Phosphorus diffusion from the sediment in the placement area is lower than the rest of WLEB and <0.04 % of total diffusive load.

![Graph showing release rates in June and October](image-url)
Western Lake Erie Ecosystem Model (WLEEM) - Phosphorus Cycling

Solar Radiation

Open-Lake Placement P Loads

External P Loads

Uptake of PO_4

Release of PO_4

Decay and Mineralization - Release of PO_4

Phytoplankton

SRP $\leftarrow \rightarrow$ PIP

POP Mineralization

Phytoplankton Settling

Grazing

Predation

Release of PO_4

Zooplankton

Fecal Pellet Settling

Resuspension

Diffusive Exchange

Exchange with Central Basin

Upper Trophic Levels

PIP: Particulate Inorganic Phosphorus

POP: Particulate Organic Phosphorus

Western Lake Erie Ecosystem Model (WLEEM) - Phosphorus Cycling

21
Model Calibration

Model captures deposition of open lake placed material very well.

[Graph showing the comparison of Data and Model Result with time and suspended solids mass over a period from 8/21/13 12:00 to 8/21/13 15:00.]
Model Results - Placement Site

Baseline
Increase Placement
No Placement
No Maumee
Model Results - Toledo Water Intake

Baseline
Increase Placement
No Placement
No Maumee

Open lake placement does not impact HABs at Toledo water intake
Summary

- > 95% of barge-released dredged material deposits very quickly as a single mass to the sediments at the open-lake placement site.

- Residual water column suspended sediment and phosphorus concentrations following placement return to near-background levels within an hour through settling and dispersion.

- Cyanobacteria measurements at placement and reference areas match current scientific understanding of bloom development and movement in WLEB.
Summary

- Sediment and associated phosphorus from the placement area resuspend and deposit at the same rate as other areas of similar depth in WLEB.

- TP concentrations are 4x higher in Maumee River suspended sediment than placement and reference area sediment.

- Placement area bathymetry measurements show deposited material has not been spread throughout the Western Basin.

- Sediment pore water from the placement area is not a significant source (<0.04% of total diffusive P budget) of bioavailable phosphorus.
Conclusions

- Open-lake placement of dredged material does not contribute to the development of HABs in the Western Basin of Lake Erie.

- Removing dredged material from the basin would not reduce HABs.

- Our study conclusions are in agreement with the scientific consensus that reducing HABs should focus on Maumee River phosphorus loading.

Questions?

The HAB report is available at the following link: